63 research outputs found

    Motion analysis report

    Get PDF
    Human motion analysis is the task of converting actual human movements into computer readable data. Such movement information may be obtained though active or passive sensing methods. Active methods include physical measuring devices such as goniometers on joints of the body, force plates, and manually operated sensors such as a Cybex dynamometer. Passive sensing de-couples the position measuring device from actual human contact. Passive sensors include Selspot scanning systems (since there is no mechanical connection between the subject's attached LEDs and the infrared sensing cameras), sonic (spark-based) three-dimensional digitizers, Polhemus six-dimensional tracking systems, and image processing systems based on multiple views and photogrammetric calculations

    TEMPUS: Simulating personnel and tasks in a 3-D environment

    Get PDF
    The latest TEMPUS installation occurred in March, 1985. Another update is slated for early June, 1985. An updated User's Manual is in preparation and will be delivered approximately mid-June, 1985. NASA JSC has full source code listings and internal documentation for installed software. NASA JSC staff has received instruction in the use of TEMPUS. Telephone consultations have augmented on-site instruction

    Strength Modeling Report

    Get PDF
    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    User interface enhancement report

    Get PDF
    The existing user interfaces to TEMPUS, Plaid, and other systems in the OSDS are fundamentally based on only two modes of communication: alphanumeric commands or data input and grapical interaction. The latter are especially suited to the types of interaction necessary for creating workstation objects with BUILD and with performing body positioning in TEMPUS. Looking toward the future application of TEMPUS, however, the long-term goals of OSDS will include the analysis of extensive tasks in space involving one or more individuals working in concert over a period of time. In this context, the TEMPUS body positioning capability, though extremely useful in creating and validating a small number of particular body positions, will become somewhat tedious to use. The macro facility helps somewhat, since frequently used positions may be easily applied by executing a stored macro. The difference between body positioning and task execution, though subtle, is important. In the case of task execution, the important information at the user's level is what actions are to be performed rather than how the actions are performed. Viewed slightly differently, the what is constant over a set of individuals though the how may vary

    Appendices - Parametric Keyframe Interpolation Incorporating Kinetic Adjustment and Phrasing Control

    Get PDF
    These are the unpublished appendices for the paper entitled, Parametric Keyframe Interpolation Incorporating Kinetic Adjustment and Phrasing Control

    System integration report

    Get PDF
    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment

    Dynamic Simulation for Zero-Gravity Activities

    Get PDF
    Working and training for space activities is difficult in terrestrial environments. We approach this crucial aspect of space human factors through 3D computer graphics dynamics simulation of crewmembers, their tasks, and physics-based movement modeling. Such virtual crewmembers may be used to design tasks and analyze their physical workload to maximize success and safety without expensive physical mockups or partially realistic neutral-buoyancy tanks. Among the software tools we have developed are methods for fully articulated 3D human models and dynamic simulation. We are developing a fast recursive dynamics algorithm for dynamically simulating articulated 3D human models, which comprises kinematic chains - serial, closed-loop, and tree-structure - as well as the inertial properties of the segments. Motion planning is done by first solving the inverse kinematic problem to generate possible trajectories, and then by solving the resulting nonlinear optimal control problem. For example, the minimization of the torques during a simulation under certain constraints is usually applied and has its origin in the biomechanics literature. Examples of space activities shown are zero-gravity self orientation and ladder traversal. Energy expenditure is computed for the traversal task

    The Center for Human Modeling and Simulation

    Get PDF
    The overall goals for the Center for Human Modeling and Simulation are the investigation of computer graphics modeling, animation, and rendering techniques. Major focii are in behavior-based animation of human movement, modeling through physics-based techniques, applications of control theory techniques to dynamic models, illumination models for image synthesis, and understanding the relationship between human movement, natural language, and communication
    • …
    corecore